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1. Introduction

Rapid advancement in biological and medical imaging technologies in-

creases demand for quantitative, computational anatomy tools. The prin-

cipal tools of this emerging field are deformable mappings between images

whether they be driven by similarity metrics which are intensity-based, point-

set-based, or both. Several categories of mappings exist in the literature. Of

particular recent interest are diffeomorphic transformations which, by defi-

nition, preserve topology. Topology preservation is fundamental to making

comparisons between objects in the natural world that are thought to differ

or change while preserving local neighborhood relations. Cytoarchitectonic

brain mapping studies also suggest that the layout of cell types throughout

the brain is generally preserved (Schleicher et al., 2009), further motivating

diffeomorphic mapping in the context of the brain.

Our limited assessment of published research mirrors the experience of

many others who prefer a working paradigm of reproducible research (Ko-
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vacevic, 2006). Dr. Kovacevic describes “[reproducible research as] the idea

that, in ‘computational’ sciences, the ultimate product is not a published

paper but, rather, the entire environment used to produce the results in the

paper (data, software,etc.).” After an informal survey of 15 published pa-

pers, she finds “none had code available” and “in only about half the cases

were the parameters [of the algorithm] specified.” The computational sci-

ences research community also voices concerns about reproducibility (Yoo

and Metaxas, 2005; Ibanez et al., 2006). In this paper, we discuss our con-

tribution to the open source medical image analysis research community

which we call ANTs (Advanced Neuroimaging Tools). Built on an an In-

sight ToolKit (ITK) framework, this software package comprises a suite of

tools for image registration, template building and segmentation based on

previously published research. Here, we provide an overview of the package

and detail recent technical advances, in the spirit of previous papers pub-

lished in this journal (Neu et al., 2005; Zhang et al., 2008; Patel et al., 2010)

and open source registration tools such as Elastix (Klein et al., 2010b).

The recent outcome from two large-scale comparative image registration

algorithm assessments (Klein et al., 2009), http://empire10.isi.uu.nl is

perhaps the most persuasive evidence motivating the contributions discussed

in this paper. Our Symmetric Normalization (SyN) transformation model

(Avants et al., 2008) performs consistently in the top rank across all tests

in the Klein et al. (2009) study and finished first overall in the phase one

Empire-10 evaluation study of intra-subject thoracic CT registration (http:

//empire10.isi.uu.nl) . Unlike some of the other algorithms in these

studies, all of our methods (not just SyN) are open source software.
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One difficulty in interpreting the results of these evaluation studies is

that each algorithm uses a different combination of transformation model

(the geometric constraint on the mapping between brains), similarity metric

(the measure that evaluates how similar two images appear), and multi-

resolution, optimization, and resampling strategies and parameter settings.

Thus, one cannot isolate the effect of transformation model from similarity

metric or optimization strategy. Other aspects of implementation may also

differ, including whether the authors recommend using whole head or whole

brain data. For instance, the DARTEL algorithm (Ashburner, 2007) uses

whole head data and segmentation to aid performance while the other meth-

ods did not incorporate segmentation. The follow-up evaluation study Klein

et al. (2010a) evaluated ART2.0 (Ardekani et al., 2005), SyN, and Freesurfer

(Fischl and Dale, 2000) on whole head data and found that both brain extrac-

tion and registration via an “optimal” (group-generated) template improve

performance. However, Klein et al. (2010a) applied generic parameters for

ANTs, including the similarity metric, which might have resulted in subop-

timal performance for the whole head component of the study.

Consequently, here we study the effect of the similarity metric on whole

head registration-based labeling via an optimal template. We evaluate ANTs

affine as well as nonlinear registration performance because accuracy in both

stages is critical for successful registration-based brain segmentation/label-

ing. Furthermore, this problem is faced routinely in brain image processing

labs (Ségonne et al., 2004; Sadananthan et al., 2010; Park and Lee, 2009;

Lim and Pfefferbaum, 1989; de Boer et al., 2010; Acosta-Cabronero et al.,

2008). One advantage of a consistent and modular framework, such as con-
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structed in ANTs, is that it is possible to evaluate a single component of the

processing stream while holding all other aspects constant.

The paper organization: Section 2 gives an overview of the transformation

models and similarity metrics in ANTs and their use with SyN in population

mapping. Section 3 reports results on a series of large-scale experiments using

the LPBA manually labeled dataset to evaluate ANTs registration applied to

cortical and brain labeling. Finally, we close with a discussion of our findings.

2. Theoretical Overview of ANTs

The following three components provide a common classification schema

for registration methods (Brown, 1992; Ibanez et al., 2002):

• the transformation model, which includes the regularization kernels,

• the similarity (or correspondence) measures, and

• the optimization strategy.

In general, image normalization computes the optimal transformation, φ,

within a transformation space which maps each x of image I(x) to a loca-

tion in image J (z) by minimizing a cost function, C, describing the similarity

between I and J . SyN, explained in detail below, symmetrizes this formula-

tion and is available in ANTs. A summary of ANTs transformation models

and similarity measures is in Table 1. Details follow in subsequent sections.

2.1. ANTs Transformation Models

A researcher in brain mapping may choose from a variety of transfor-

mation models with different degrees of freedom. For deformable trans-
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formations, one approach is to optimize within the space of non-topology-

preserving, yet physics-based transformations—an approach pioneered by

Bajcsy (Bajcsy and Kovacic, 1989). Elastic-type models such as HAMMER

(Shen and Davatzikos, 2002), statistical parametric mapping (SPM) (Ash-

burner and Friston, 2000), free-form deformations (FFD) (Rueckert et al.,

1999), and Thirion’s Demons (Thirion, 1998) operate in the space of vector

fields, which does not preserve topology. In other words, without applying

ad hoc constraints, these algorithms may allow the brain topology to change

in an uncontrolled way which makes the deformable mappings difficult to

interpret in functional or anatomical studies.

Diffeomorphic transformations provide well-behaved solutions with math-

ematical guarantees about distance in deformation space and regularity. Fur-

thermore, the diffeomorphic space has group structure (Arnold, 1991). Op-

timizing directly within this space shows remarkable success in various com-

putational anatomy studies involving longitudinal (Avants et al., 2007; Fox

et al., 2001), functional (Miller et al., 2005), and population data (Avants

et al., 2007). We include three such diffeomorphic algorithms in the ANTs

toolbox based on previous research and a new time-parameterized extension

to the standard symmetric normalization (SyN) algorithm (Avants et al.,

2008).

Regardless of current research trends, however, we recognize that selec-

tion of the transformation model is ultimately application-specific, that no

single choice is optimal for all scenarios (Wolpert and Macready, 1997), and

therefore, the transformation model must be chosen in a principled fashion.

Indeed, several non-diffeomorphic algorithms perform quite well in Klein’s
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comparative study of nonrigid registration algorithms (Klein et al., 2009).

For this reason, ANTs also includes in its generic framework elastic-type

methods among its transformation model options. In this paper, we focus on

affine registration and the SyN method due to their proven reliability, speed

and flexibility.

2.1.1. Rigid and Affine Linear Transformations

Image registration strategies often begin with a linear transformation

for initial global alignment, followed by a deformable transformation with

higher degrees of freedom. The linear transformations available within ANTs

optimize either a mean-squared difference (MSQ), cross-correlation (CC) or

mutual information (MI) similarity metric, each of which are optimized with

respect to translation, rotation, and in the case of affine transformations,

scaling and shearing. The successive optimization of each component of the

linear transformation allows for careful control over increasing degrees of

freedom. ANTs also composes the affine transformation with the deformable

transformation field before performing any interpolation or downsampling.

In this way, ANTs normalization never requires more than a single image

interpolation step and is able to refer back to the original full-resolution

images. The ANTs implementation of rigid mapping is quaternion-based

with additional scaling and shearing terms when affine mapping is desired.

The user enables purely rigid mapping by setting the --do-rigid true flag.

2.1.2. Vector Field Operators for Regularization

Deformable normalization strategies typically invoke a deformation regu-

larization step which smooths the displacement field, u, or velocity field, v,

or both by a linear operator such as the Laplacian or Navier-Stokes operator.

7



One may write this regularization as a variational minimization in terms of

its linear operator or in terms of a kernel function operating on the field

itself, e.g., usmooth = K ? unot smooth, where K? denotes convolution with the

Green’s kernel, K, for the linear operator, L. ANTs regularization models

operate on either the whole mapping φ or the gradient of the similarity term

or both. The same regularization scheme is available for both diffeomor-

phic and the recent directly manipulated free-form deformation (DMFFD)

(Tustison et al., 2009a) registration. ANTs users may set parameters such

that discretized FFD strategies and diffeomorphisms are combined. ANTs

enables a variety of choices for K including the Gaussian with varying σ

and a variety of B-spline functions, both of which induce adequate regularity

for normalization models used in ANTs. While additional physical opera-

tors will be incorporated in future releases, current B-spline options provide

considerable flexibility (Tustison and Gee, 2005) that has yet to be fully

explored.

2.1.3. Diffeomorphic Transformations

Diffeomorphisms form a group of differentiable maps with differentiable

inverse (Ebin and Marsden, 1970; Mumford, 1998) that is closed under com-

position. ANTs assumes the diffeomorphism, φ, is defined on the image

domain, Ω, and maintains an affine transform at the boundary such that

φ(∂Ω) = A(Id) where A(Id) is an affine mapping applied to the identity

transformation. The map φ, over time, parameterizes a family of diffeo-

morphisms, φ(x, t) : Ω × t → Ω, which can be generated by integrating a

(potentially) time-dependent, smooth velocity field, v : Ω× t→ Rd, through

8



the ordinary differential equation (o.d.e.)

dφ(x, t)

dt
= v(φ(x, t), t), φ(x, 0) = x. (1)

The existence and uniqueness theorem for o.d.e.’s implies that integrating

Equation (1) generates a diffeomorphism. The deformation field yielded by

φ is u(x) = φ(x, 1)− x.

One typically encounters somewhat complex intensity transfers between

one anatomical instance J and another instance I. Thus, ANTs enables

a variety of similarity metric possibilities beyond the conventional squared

difference metric. This leads to the following generalization of the standard

Large Deformation Diffeomorphic Metric Matching (LDDMM) equation (Beg

et al., 2005):

v∗ = argmin
v

{∫ 1

0

||Lv||2dt+ λ

∫
Ω

Π∼(I, φ(x, 1),J )dΩ

}
(2)

where Π∼ is a similarity metric depending on the images and the mapping and

λ controls the degree of exactness in the matching. We discuss established

alternatives for Π in section 2.2.

Exploiting the fact that the diffeomorphism, φ, can be decomposed into

two components φ1 and φ2, one may construct a symmetric alternative to

Equation (2). Now define, in t ∈ [0, 0.5], v(x, t) = v1(x, t) and v(x, t) =

v2(x, 1−t) when t ∈ [0.5, 1]. This leads to the symmetric variant of Equation
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(2),

{v∗1,v∗2} =argmin
v1,2

{
∫ 0.5

0

||Lv1(x, t)||2 dt+

∫ 0.5

0

||Lv2(x, t)||2 dt

+ λ

∫
Ω

Π∼ (I ◦ φ1(x, 0.5),J ◦ φ2(x, 0.5)) dΩ

}
. (3)

Note that the regularization term, here, is equivalent to that in equation 2.

The only change is the splitting of the integral into two time intervals re-

flecting the underlying optimized components of the velocity field. The cor-

responding symmetric Euler-Lagrange equations are similar to (Miller et al.,

2002). The difference, here, is that in finding v∗, we minimize the variational

energy from either endpoint towards the midpoint of the transformation, as

indicated by the data term. This strategy “splits” the optimization depen-

dence equally between both images. Thus, gradient-based iterative conver-

gence deforms I and J along the geodesic diffeomorphism, φ, to a fixed

point midway (intuited by the notion of shape distance) between I and J ,

motivating the moniker “Symmetric Normalization” (SyN) for the solution

strategy.

Other diffeomorphic algorithms in the research literature include DAR-

TEL (Ashburner, 2007) and Diffeomorphic Demons (Vercauteren et al., 2007,

2009), both of which use a constant velocity, exponential model for gener-

ating diffeomorphisms. We include—within ANTs options—these four dif-

feomorphic transformation models for parameterizing φ(·): Geodesic SyN,

Greedy SyN, exponential mapping, and Greedy Exp (based on Diffeomor-

phic Demons). As shown in Table 1, each of these transformation models
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can utilize a host of similarity measures both individually and in combina-

tion.

Greedy SyN. Although the Geodesic SyN algorithm conforms most closely

to the theoretical diffeomorphic foundations culminating in Equation (3),

the computational and memory cost is significant due to the dense-in-time

gradient calculations and requisite reintegration of the diffeomorphisms after

each iterative update. While geodesic SyN is available in ANTs 2.0, the

lower-cost, greedy variant called Greedy SyN is also available and was the

strategy used in the large-scale comparative image registration algorithm

assessment of (Klein et al., 2009).

Greedy optimization of Equation (3) calculates the gradient only at the

midpoint of the full diffeomorphism, i.e. at t = 0.5,

∇Π =
∂

∂φi

Π∼(I(φ−1
1 (x, 0.5)),J (φ−1

2 (x, 0.5))) (4)

for i ∈ {1, 2}. φ1(x, 0.5) and φ2(x, 0.5) are then updated from the previous

iteration according to

φi(x, 0.5) = φi(x, 0.5) + (δK ?∇Πi(x, 0.5)) ◦ φi(x, 0.5). (5)

Choices for the gradient descent parameter, δ, are discussed in section 3.3.3.

In this equation, the gradient at the midpoint is mapped back to the ori-

gin of each diffeomorphism. We then update the full mapping by explicitly

enforcing φ−1
i (φi(x, 1)) = x in the discrete domain, as described in (Avants

et al., 2008).

2.2. ANTs Intensity-Based Similarity Metrics

Several intensity-based image metrics appear in the literature with vary-

ing performance depending on their application. We include three of the
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most widely used similarity metrics within ANTs and reviewed in (Hermosillo

et al., 2002): mean squared intensity difference (Christensen et al., 1996;

Thirion, 1998; Beg et al., 2005; Ashburner, 2007; Vercauteren et al., 2009),

cross-correlation (Gee, 1999; Ardekani et al., 2005; Avants et al., 2008), and

mutual information (Viola and Wells, 1997; Rueckert et al., 1999; D’Agostino

et al., 2003; Crum et al., 2003; Rogelj and Kovacic, 2006; Tao et al., 2009;

Loeckx et al., 2010). ANTs implementation of these metrics all follow the

same input/output interface and exist within metric-specific classes that in-

herit base functionality from a generic parent class. Each metric expects

only two images as input, along with relevant parameters. The metrics ex-

pect the images to exist within the same physical space. We provide specific

implementation details for each metric below and note that the code for each

implementation is freely available. We restrict discussion to the elements of

implementation that are critical to performance. Additionally, we report the

derivatives of a pair of images, I and J , with respect to the identity trans-

form, that is, after they have been mapped to the same space. Mapping to a

different domain introduces a Jacobian change of variables as in (Beg et al.,

2005) which may be introduced as a product with the derivative terms given

here.

2.2.1. ANTs Mean Squared Intensity Difference

The simplest of the metrics to implement is MSQ. However, a few details

are critical. The MSQ derivative equations available in ANTs—via different

command line options—are based on Demons algorithm variants (Thirion,

1998). Define g as a gradient vector and D = I(x) − J(x). Then the MSQ

12



forcing equation may be written

∇IMSQ =
D

D2 + g2
g, (6)

where g = ∇I(x) or g = gs = ∇I(x)+∇J(x). These two gradient choices are

available as command line options. Additionally, ANTs metrics all implement

the complementary force, i.e. the similarity gradient with respect to J . This

can be gained for MSQ by setting D = J(x)− I(x) and g = ∇J(x). Because

SyN uses gradients with respect to both I and J , there is no need to use

the “symmetrized gradient” gs (as in (Thirion, 1998)). However, when using

an “asymmetric” ANTs transformation model (e.g. LDDMM, Diffeomorphic

Demons or traditional Demons-style elastic matching), using gs may increase

performance by providing additional image forces.

2.2.2. ANTs Cross-Correlation (CC)

The current version of ANTs bases the correlation derivative on our prior

work (Avants et al., 2008), but is much faster due to a sparse, linearized

neighborhood updating scheme and a polynomial expansion of the CC terms.

This new, accelerated cross-correlation approach is similar to techniques used

for efficient low pass, median and texture co-occurrence filtering (Wells, 1986;

Clausi and Jernigan, 1998; Huang et al., 1979). One may write the cross-

correlation as:

CC(x) =

∑
i((I(xi)− µI(x))(J(xi)− µJ(x)))

2∑
i(I(xi)− µI(x))2

∑
i(J(xi)− µJ(x))2

, (7)

where x is at the center of N ×N square window (in two dimensions), µ is

the mean value within the window centered at x and xi iterates through that

window. CC is expensive to compute when done naively but may be sped
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up by multiplying out the terms and storing local variables for each resulting

term. Consider, in general, the polynomial equation,
∑

i(ai − µa)(bi − µb),

which multiplies out to
∑

i aibi−µb(
∑

i ai)−µa(
∑

i bi)+
∑

i µaµb. Each term

in the CC equation above may be represented as this polynomial. Thus,

to compute CC within a window, one may keep track of each of these five

values:
∑
I(xi),

∑
J(xi),

∑
I(xi)

2,
∑
J(xi)

2,
∑
I(xi)J(xi) along with the

number of voxels within the window which is constant except near the edges

of an image. With all of these terms, one may compute the derivative of CC

as described in Equations (6) and (7) of (Avants et al., 2008). Furthermore,

note that—as one iterates through an image—only a few of the voxels that

comprise
∑
I(xi),

∑
J(xi),

∑
I(xi)

2,
∑
J(xi)

2,
∑
I(xi)J(xi) change. That

is, only the boundaries of the window are updated. In 2D, iterating left to

right, the left edge voxels must exit the computation while right edge voxels

must enter the computation. ANTs uses this efficient scheme to reduce the

total computational expense from 3N3m+5N3p to 3N2m+5N2p operations

per voxel over a 3D image (with some additional cost for the data structure

that comprises the sliding window), where m is the cost of a multiplication

and p is the cost of addition. This gives a theoretical speed-up of 5.36 when

N = 9,m = 2, p = 1 and 6.65 when N = 9,m = 4, p = 1. In 3D, this

results in an empirical speed-up of approximately a factor of 4 for a brain

registration with a neighborhood of size 9×9×9, the recommended default for

brain mapping with SyN driven by the CC similarity metric. In comparison,

the Klein 2009 paper used a 5 × 5 × 5 window. The CPU, compiler and

node usage all influence the speed-up factor. The fact that our practical

speed-up is near the theoretical limit indicates that an implementation of
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CC that is not optimized will dominate computation time for deformable

registration. Thus, the ANTs optimizations for gradient-based CC are a

significant contribution and allows the use of a larger correlation window

than before (Klein et al., 2009), which improves performance in whole head

image registration. Additionally, our optimizations are distinct from the well-

known paper (Lewis, 1995) which optimized non-gradient-based CC assuming

a constant neighborhood in one of the two images. We used the default

9× 9× 9 window in this evaluation study.

2.2.3. ANTs Mutual Information (MI)

The ANTs implementation of mutual information and its gradient con-

struct an image-based joint histogram and derive marginal distributions from

this joint histogram. This implementation relates to work in (Hermosillo

et al., 2002; Mattes et al., 2003; Rogelj et al., 2003) which describes the the-

ory well. The basis of the ANTs MI function is the joint histogram of the

images I and J which is constructed by locating a joint intensity value at

each position, x, and then incrementing the nearest neighbor bin within the

joint histogram. We then normalize the joint histogram by its sum to con-

struct the two-dimensional joint probability image Q : [1, nh]×[1, nh]→ [0, 1],

where nh, default 32, is the number of bins per dimension in the histogram.

We also define a sub-voxel mapping from the intensity values in the images

I and J to Q. That is, the intensity i = I(x) maps to position p within

the columns of the joint histogram and intensity j = J(x) maps to q in the

rows where a linear interpolant is used to find the continuous position. We

may then interpolate Q at continuous positions with a cubic B-Spline kernel

as described in (Mattes et al., 2003). The derivative with respect to I(x) is
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derived in (Hermosillo et al., 2002):

∇MII = (
dpQ(p, q)

Q(p, q)
− df(p)

f(p)
)∇I(x), (8)

where p is the spatial index to the column of the joint histogram that locates

the intensity at I(x) and q is the spatial index to the row of the joint his-

togram that locates the intensity at J(x). The term dpQ(p, q) is the spatial

gradient of the joint histogram Q in the direction of the columns, computed

with the B-Spline interpolator. The term df(p) is the spatial gradient of

the marginal histogram f for I where the marginal is derived from the joint

histogram, as in (Mattes et al., 2003). As with the other metrics, the ANTs

MI function also computes the derivative with respect to J and uses both in

the optimization of the registration.

2.2.4. Feature-Based Metrics

In addition to intensity-based metrics, ANTs contains similarity metrics

for registering labeled point sets or label images. These include a landmark

matching metric and two point-set metrics (Pluta et al., 2009; Tustison et al.,

2009b) which can accommodate point sets of different cardinality. These

point-set metrics are applicable alone for strict point-set registration or in

parallel with intensity-based metrics for dual intensity/point-set registration.

Exact matching and partial (or incompletely labeled) (Pluta et al., 2009)

point-set matching are available, though not evaluated here.

2.3. ANTs Template Creation and Labeling

ANTs robustly maps populations to a common space by finding the tem-

plate and set of transformations that gives the “smallest” parameterization

of the dataset. The SyGN (symmetric groupwise normalization, pronounced
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“sign”) method implements this approach and is fully explained in (Avants

et al., 2010b). The size of the parameterization, in the ANTs implementation

of SyGN, is given by the metric distance between the average affine transfor-

mation and the identity affine transformation as well as the diffeomorphism

lengths. No specific guess for the initial template is required. Instead, the

template is derived completely from the database of n images, {J i}. We

denote such a template as image Ī. Our previous work (Avants et al., 2010a)

updates Ī with respect to both shape and the correlation, but here we use

Euclidean distance as a metric for average appearance. In this study, the ini-

tial templates are obtained by averaging the data before any transformation

is applied.

SyGN optimizes the shape of Ī via a diffeomorphism, ψ (which contains

an affine transformation), such that the size and shape of the brain converges

to the group mean. This is achieved, in ANTs, by optimizing the following

energy iteratively,

EĪ =
∑
i

ESyN,Π(Ī , J i, φi) where ∀i, φi(x, 0) = ψ(x), (9)

where ψ is a diffeomorphism representing the initial conditions of each φi and

SyN gives the solution for each pairwise problem. The algorithm iteratively

minimizes the energy EĪ of Equation (9) with respect to the set of φi through

distributed computing (instantiated by the ANTs script buildtemplateparallel.sh

). Additionally, the template appearance and template shape both approach

the group mean in the Euclidean space of appearance, the affine space of

shape and the diffeomorphic space of shape. This is in contrast to methods

such as congealing (Learned-Miller, 2006) or (Joshi et al., 2004) in that nei-

ther method explicitly optimizes the geometric component of the template.
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Thus, the ANTs SyGN algorithm yields a robust result across populations,

as will be shown in the evaluation section. The method typically converges in

well under 10 iterations (usually three to five depending upon the complex-

ity of the deformations in the data). Given a template, and a set of labels,

the ANTs program ( ImageSetStatistics ) labels the template by majority

voting (Heckemann et al., 2006).

2.4. ANTs Implementation: SVN Revision 603+

ANTs, built upon an ITK foundation, maintains the same coding style

as its base. For much of its functionality, ANTs requires version 3.20 of

the Insight ToolKit (ITK), necessitating the installation of ITK prior to

installing ANTs. All ANTs source code is available via the online source code

repository SourceForge.1 Binaries for Windows, Mac OS X (OSX), 32- and

64-bit LINUX (Linus Torvald’s UNIX) are also available from the same online

location. For quality assurance and maintenance purposes we established an

ANTs test reporting open source “dashboard” 2 on our lab website 3 to

monitor compilation and testing of the ANTs program. Such a configuration

facilitates reporting of user problems on a multitude of computing platforms.

The methods above are all available within ANTs SVN revision 603 and

later, compiled against stable ITK version 3.20. A user should download

the binaries or compile the source code and run the built-in tests to verify

functionality. The ANTs CMakeLists.txt file contains the commands that

define the tests and test data used in automated testing (via the CMake

1http://sourceforge.net/projects/advants/
2http://www.cdash.org
3http://www.picsl.upenn.edu/cdash/index.php?project=ANTS
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ctest command) and allows users to evaluate whether they are getting the

expected performance from their own installation. Finally, in Table 2 we

give a brief summary of the arguments available for the normalization in

the ANTs package. This includes the corresponding variable specification.

More information can be found on the ANTs website. This work is based on

the 1.9.1 ANTs release at http://sourceforge.net/downloads/advants/

ANTS/ .

3. Experimental Evaluation

We now apply the above methods using Gaussian regularization of the

velocity field, the SyN transformation model, the SyGN template building

algorithm and the MSQ, CC and MI metrics to build templates via cross-

validation, label the templates by majority voting and apply the templates

to the LPBA40 validation dataset.

3.1. 3-D LPBA40 Whole Head Image Normalization Evaluation

The LPBA40 dataset (Shattuck et al., 2008) was collected at the North

Shore Long Island Jewish Health System imaging center and is maintained

at UCLA. LPBA40 contains 40 images (20 male + 20 female) from normal,

healthy ethnically diverse volunteers with average age of 29.2 ± 6.3 years.

Each subject underwent 3D SPGR MRI on a 1.5T GE system resulting in

0.86×0.86×1.5mm3 images. Each MRI in the LPBA40 dataset was manually

labeled with 56 independent structures at the UCLA Laboratory of Neuro

Imaging (LONI). The test-retest reliability of the labeling, across raters, was

reported as a minimum Jaccard ratio of 0.697 in the supramarginal gyrus to

a maximum of 0.966 in the gyrus rectus. A single labeling of each image is
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made available to the public and used, here, as silver-standard data for both

training and testing in our cross-validation scheme.

3.2. Evaluation Pipeline

The evaluation begins by dividing the dataset of 40 subjects into group

A (subjects 1 to 20) and B (subjects 21 to 40). Then, for each (affine,

diffeomorphic) metric pair (MSQ, MSQ), (CC, CC), (MI, MI), (MSQ, MI),

(CC, MI) we:

1. Construct a group A template via SyGN.

2. Construct a group B template via SyGN.

3. Label each template by majority voting.

4. Map group B to template A and group A to template B.

5. Warp the template labels, with nearest neighbor interpolation, to each

individual and evaluate overlap measures with respect to ground truth

for both affine and the combined affine and diffeomorphic maps.

Thus, for each evaluation run, we produce two templates (one for group A

and one for group B) and mapping of all left-out subjects to the opposite

group’s template. The scripts that perform this evaluation are available in

supplementary material and in the ANTs script base. A visual summary of

the pipeline is in Figure 1. Note that the affine registration metrics in ANTs

are derived from ITK and explained in ITK documentation. To determine

registration quality, we use the Jaccard metric, defined as

S(R1, R2) =
](R1 ∩R2)

](R1 ∪R2)
, (10)

which measures both difference in size and location between two binary seg-

mentations, R1 and R2. The ](R) operator counts the number of nonzero
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Majority Vote
Template Labels

Estimate
Optimal

Template

..
.

Subject N

Subject 1

Left out Subject
Map Template & 
Labels to Subject

Training and Testing Given Affine & Deformable Metric Combination

Training

Testing

Evaluate Against
Ground Truth

Figure 1: The evaluation pipeline employs two-fold cross-validation and evaluates the
following (affine, deformable) metric pairs: (MSQ,MSQ), (CC,CC), (MI,MI), (MI,MSQ),
(MI,CC). The LPBA dataset’s labels provide the ground truth for the subject registration
being evaluated.

pixels in the region, R, which represents a binary object (e.g. a brain or

hippocampus labeling).

3.3. Parameter Selection

The theory section characterizes image registration algorithms as a combi-

nation of transformation model, similarity and optimization criterion. Here,

we detail our experience with the most significant parameters in ANTs and

explain default choices and useful parameter ranges. All of the user-controllable

parameter choices made in this work are contained within the ANTs scripts

antsIntroduction.sh which is called by buildtemplateparallel.sh ) and

wrapped by the script LPBA_Leave_N_Out_ANTS_Evaluation.sh, located at

the Files section of the ANTs sourceforge website4.

4script location on web: https://sourceforge.net/downloads/advants/ANTS_

Evaluation_Scripts/
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3.3.1. Transformation Models

The transformation model, itself, is a parameter in ANTs. That is, does

one choose SyN, SyN with time (geodesic SyN), an elastic type of model, dif-

feomorphic demons model? In this work, we selected SyN because it provides

a compromise of speed, flexibility and performance. SyN and other diffeo-

morphic models penalize deformation linearly whereas elastic-style models

penalize deformation quadratically. While a discussion of these details is be-

yond the scope of the paper, linear deformation penalties are fundamental to

allowing large deformation and robust brain mappings across many different

brain shapes. The only parameter to SyN, directly, is the gradient descent

step-size (discussed in section 3.3.3). The second important component of

the transformation model is the regularization which is related to the linear

operator acting on the velocity and/or deformation field. In ANTs SyN, the

default regularization is Gauss[3,0], which indicates that the velocity field

is smoothed by a Gaussian filter with variance of 3 × the image spacing.

Increasing the value beyond 3 will increase the smoothness of the transfor-

mation (and reduce the fineness of detail in the mapping) and decreasing this

value (e.g. to zero) will reduce the smoothness. We do not typically change

this parameter. One may impose regularization on the deformation field by

choosing a non-zero value for the second entry in the regularization option,

e.g. Gauss[3,1]. The ANTs B-Spline regularization options have yet to be

fully explored but show promise in initial experiments.

3.3.2. Similarity Metrics

In this work, ANTs applies two preprocessing steps that impact the rela-

tive appearance of the brain and, thus, the similarity metrics discussed above.
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ANTs employs a histogram matching algorithm, described in (Avants et al.,

2004; Yoo and Metaxas, 2005), as a default within the scripts that may be

turned off by excluding the --Use-Histogram-Matching option from the

command line. This step is suggested in (Noblet et al., 2006) and shown

to be valuable in prior (unpublished) ITK evaluations. We also preprocess

the data with ANTs bias correction which does not change the appearance

significantly unless notable bias is present.

3.3.3. Optimization Strategy

The ANTs gradient descent and multi-resolution optimization parame-

ters are perhaps the most important to bring to the user’s attention par-

ticularly if the user is interested in using alternative transformation mod-

els (in addition to the need for a good initial rigid/affine mapping before

proceeding to deformable registration). We choose the multi-resolution op-

timization parameters—for both affine and deformable registration—based

on the resolution of the input data and the structure within the image rel-

ative to this resolution. For typical 1mm3 T1 MRI, we use three levels in

a multiresolution Gaussian pyramid. That is, the registration algorithm be-

gins at the resolution 1mm × 2n, where n is the number of levels in the

pyramid, and proceed through resolutions 1mm × 2n−1, 1mm × 2n−2 until

the full resolution is reached. In our experience, the 1mm3 brain’s resolu-

tion is rarely useful for deformable registration when downsampling proceeds

beyond n = 3. However, further downsampling is sometimes useful for over-

coming weak initialization in affine registration. Thus, when the resolution

of input data does not match these expected settings, the user may want to

alter the number of resolutions used in the deformable mapping (controlled
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through the --number-of-iterations vector parameter. The gradient de-

scent parameters employed in ANTs are based on prior evaluation studies

in affine registration (Song et al., 2007) and deformable registration (Avants

et al., 2008). Due to the linear deformation penalty, this gradient parameter

does not typically need to be changed for SyN. Its useful range—for geodesic

SyN—is between 0.1 and 1.0 where the optimal value will depend upon the

nature of the problem, the regularization choice and the data. For greedy

SyN, the useful range is narrower: 0.1 to 0.5 for most problems and for

Gauss[3,0] regularization. Increasing the deformation field regularization (

a non-zero second parameter ) may require increasing the gradient step size.

While we have found results to be robust to choices for the gradient descent

parameter, values that are too large will result in energy oscillation while

values that are too small will result in slow convergence.

4. Results

We first establish template stability across population sub-divisions and

metrics. We then detail performance differences by comparing evaluation

results across metrics.

4.1. Template Stability Across Metrics and Populations

We quantify template stability by choosing the group A (MI,CC) template

(arbitrarily) as a reference and mapping all other templates to this reference

and comparing the overlap between their labels and the group A (MI,CC)

labels. The results are shown in Table 3. The overlap values, gained by

affine registration, exceed the overlaps gained by deformable registration for

any subject in the dataset. After deformable registration, overlap values
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Template Stability
Similarity Metrics A → A B → A

(MI, MSQ) Aff 0.873 0.763

(MI, MSQ) Diff 0.865 0.799

(MI, CC) Aff 1 0.775

(MI, CC) Diff 1 0.815

(MI, MI) Aff 0.880 0.777

(MI, MI) Diff 0.866 0.809

Table 3: Template stability results across metrics and affine and deformable registration.

exceed the repeatability that is achievable by human raters (Shattuck et al.,

2008). The reduction in some of the A group overlap values after deformable

registration suggests we are operating near the limit of achievable overlap

when using nearest neighbor interpolation. See (Klein et al., 2010a) for

examples of this issue. Figure 2 shows the templates derived in this study

before and after registration to the CC group A template. The acutance of

the MI template is relatively reduced in comparison to the MSQ and CC

templates. Recalling that MI outperforms MSQ in terms of Jaccard overlap,

one may conclude that the acutance of the template alone is insufficient in

terms of determining the anatomical accuracy of a registration strategy.

4.2. Labeling Subjects Outside the Training Set

Five (affine, deformable) metric pairs were chosen for use in the full eval-

uation pipeline, from template construction to majority voting to labeling

the left out subjects. In the first phase, we use the same metric consistently:

(MSQ, MSQ), (CC, CC), and (MI, MI). In the second phase, we use MI as

the first metric for two more pairs, (MI, MSQ) and (MI, CC), since MI was

the best performer for affine registration in the first phase (see Figure 3). On
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MSQ-A         MSQ-B           CC-A            CC-B             MI-A             MI-B

Before Registration to CC-A

After Registration to CC-A

Figure 2: Two rows of axial slices (neurological convention, i.e. subject left is viewer’s
left) taken from each of the templates, constructed from subject group A or B, and by
(affine, diffeomorphic) registration according to (MI, MSQ), (MI, CC), or (MI, MI). The
top row shows the templates before registration to the (MI, CC) group A template and
the bottom row shows them after diffeomorphic registration. The high Jaccard overlaps
between these templates’ label sets quantifies and affirms, from an anatomical perspective,
the visual similarity in the appearance of the templates. One may see, in the top row, the
relative clarity of the MSQ, CC and MI templates. As template acutance does not strictly
increase with our performance evaluation outcome, one may conclude that template clarity,
alone, is insufficient to determine the neuroanatomical accuracy of an algorithm.
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the affine registration level, the mutual information performs best for both

brain extraction and labeling of finer structures.

4.2.1. Brain Extraction

The initial affine registration results to the derived template show a clearly

superior performance under MI, as verified by pairwise T-tests in Figure 3.

At the same time, when all of the deformable metrics are given the same

initialization with the MI metric, then they perform similarly, at least on first

glance. The concern with using the Jaccard ratio on brain extraction is that

small differences in values (even in the thousandths place) may correspond

to visually meaningful differences in labeling performance. This is due to the

fact that typical errors represent a small component of the binary image. An

example of the labeling from one subject is shown in Figure 5. The mean±sd

value of the registration-based diffeomorphic brain extractions (for all metric

pairings) are: (MSQ, MSQ)= 0.938±0.0197, (CC, CC)= 0.937±0.0210, (MI,

MI)= 0.956±0.0056, (MSQ, MI)= 0.955±0.0062, (CC, MI)= 0.958±0.0054.

The (MSQ, MSQ) and (CC, CC) results are both significantly lower than the

(MI, MSQ) and (MI, CC) results indicating that the affine MI metric boosts

performance for CC and MSQ deformable mappings. The top performer

on the Segmentation Validation Engine (the SVE http://sve.loni.ucla.edu/

) as of May 10, 2010, shows an average Jaccard ratio of 0.9504 as obtained

by user “cgaser” using VBM8.0. Thus, these template-based diffeomorphic

brain extraction methods are competitive with the state-of-the-art. There is

a difference in the brain extractions from the SVE and those distributed with

LPBA40. Thus, evaluation numbers are not strictly comparable. The SVE

data is kept hidden to prevent overfitting of data to results. As this study
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P-Values for Differences in Performance Measured by Paired Student’s T-test P-Values for Differences in Performance Measured by Paired Student’s T-test P-Values for Differences in Performance Measured by Paired Student’s T-test P-Values for Differences in Performance Measured by Paired Student’s T-test 

MI-Aff vs MSQ-Aff MI-Aff vs CC-Aff CC-Diff vs MSQ-Diff CC-Diff vs MI-Diff

brain Jaccard overlap 0.000013 0.000027 0.000573 0.004005
cortical region Jaccard overlap 0.000132 0.001254 “1.03e-8” “1.79e-14”

Figure 3: We use the Jaccard overlap metric (intersection of coregistered labeled regions
over their union) to compare performance in this evaluation. The data is visualized with a
box and whisker plot, with notches. These plots show the median toward the center of the
box. The edges of the box delimit the medians of the data above and below the median.
The whiskers and points show the minimum and maximum of the data and any points that
are plotted may be considered outliers. We used pairwise Student T-tests to determine
whether performance differences are significant. In this figure, the MSQAff, CCAff and
MIAff overlap results all report the quality of the affine mapping to the derived template
from the (MSQ, MSQ), (CC, CC) and (MI, MI) results. Deformable results for these three
runs are not shown. The MI-based affine registration gave the best performance for both
brain and cortex labeling thus providing the best initialization for follow-up deformable
registration. For this reason, the MSQDiff, CCDiff and MIDiff results all use the MI metric
for the affine component and MSQ, CC and MI during deformable registration.
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Mean Jaccard Overlap for Each Region and Each Method:  2-Fold Cross-ValidationMean Jaccard Overlap for Each Region and Each Method:  2-Fold Cross-ValidationMean Jaccard Overlap for Each Region and Each Method:  2-Fold Cross-ValidationMean Jaccard Overlap for Each Region and Each Method:  2-Fold Cross-ValidationMean Jaccard Overlap for Each Region and Each Method:  2-Fold Cross-ValidationMean Jaccard Overlap for Each Region and Each Method:  2-Fold Cross-Validation
LPBA40 Label MSQAff CCAff MIAff MSQDiff CCDiff MIDiff

182_brainstem 0.655 0.658 0.66 0.717 0.735 0.729

181_cerebellum 0.649 0.651 0.659 0.71 0.729 0.724

166_R_hippocampus 0.635 0.639 0.643 0.678 0.708 0.697

165_L_hippocampus 0.625 0.627 0.633 0.669 0.709 0.692

164_R_putamen 0.545 0.552 0.561 0.619 0.637 0.625

163_L_putamen 0.548 0.552 0.559 0.608 0.639 0.622

162_R_caudate 0.484 0.49 0.502 0.634 0.663 0.578

161_L_caudate 0.475 0.482 0.494 0.61 0.648 0.568

122_R_cingulate_gyrus 0.495 0.498 0.508 0.578 0.593 0.599

121_L_cingulate_gyrus 0.483 0.485 0.491 0.569 0.587 0.59

102_R_insular_cortex 0.397 0.399 0.42 0.501 0.514 0.52

101_L_insular_cortex 0.363 0.364 0.378 0.483 0.496 0.489

92_R_fusiform_gyrus 0.444 0.444 0.453 0.568 0.568 0.569

91_L_fusiform_gyrus 0.479 0.479 0.488 0.625 0.616 0.61

90_R_lingual_gyrus 0.408 0.409 0.42 0.567 0.59 0.499

89_L_lingual_gyrus 0.408 0.41 0.421 0.559 0.6 0.502

88_R_parahippocampal_gyrus 0.541 0.541 0.544 0.598 0.62 0.593

87_L_parahippocampal_gyrus 0.547 0.547 0.556 0.582 0.616 0.597

86_R_inferior_temporal_gyrus 0.445 0.452 0.46 0.556 0.567 0.515

85_L_inferior_temporal_gyrus 0.45 0.452 0.462 0.555 0.574 0.517

84_R_middle_temporal_gyrus 0.462 0.467 0.473 0.532 0.56 0.527

83_L_middle_temporal_gyrus 0.472 0.475 0.481 0.543 0.561 0.536

82_R_superior_temporal_gyrus 0.485 0.49 0.498 0.539 0.571 0.553

81_L_superior_temporal_gyrus 0.508 0.515 0.514 0.564 0.583 0.57

68_R_cuneus 0.371 0.375 0.388 0.471 0.482 0.453

67_L_cuneus 0.367 0.366 0.372 0.453 0.476 0.443

66_R_inferior_occipital_gyrus 0.464 0.467 0.492 0.557 0.572 0.562

65_L_inferior_occipital_gyrus 0.46 0.465 0.484 0.564 0.584 0.569

64_R_middle_occipital_gyrus 0.356 0.361 0.397 0.5 0.524 0.474

63_L_middle_occipital_gyrus 0.379 0.382 0.421 0.539 0.564 0.527

62_R_superior_occipital_gyrus 0.375 0.382 0.399 0.504 0.536 0.508

61_L_superior_occipital_gyrus 0.406 0.41 0.413 0.525 0.563 0.506

50_R_precuneus 0.513 0.516 0.54 0.684 0.689 0.657

49_L_precuneus 0.513 0.518 0.546 0.688 0.696 0.661

48_R_angular_gyrus 0.455 0.463 0.472 0.602 0.602 0.577

47_L_angular_gyrus 0.471 0.475 0.506 0.62 0.626 0.601

46_R_supramarginal_gyrus 0.451 0.455 0.463 0.596 0.602 0.581

45_L_supramarginal_gyrus 0.481 0.484 0.504 0.606 0.613 0.602

44_R_superior_parietal_gyrus 0.441 0.442 0.47 0.598 0.621 0.603

43_L_superior_parietal_gyrus 0.435 0.436 0.47 0.585 0.602 0.588

42_R_postcentral_gyrus 0.432 0.435 0.463 0.604 0.619 0.573

41_L_postcentral_gyrus 0.468 0.472 0.49 0.632 0.66 0.601

34_R_gyrus_rectus 0.464 0.468 0.485 0.635 0.647 0.608

33_L_gyrus_rectus 0.479 0.482 0.503 0.63 0.635 0.617

32_R_lateral_orbitofrontal_gyrus 0.54 0.546 0.564 0.698 0.738 0.702

31_L_lateral_orbitofrontal_gyrus 0.525 0.534 0.551 0.688 0.727 0.68

30_R_middle_orbitofrontal_gyrus 0.468 0.475 0.484 0.567 0.61 0.592

29_L_middle_orbitofrontal_gyrus 0.49 0.501 0.505 0.586 0.617 0.604

28_R_precentral_gyrus 0.455 0.491 0.508 0.598 0.677 0.669

27_L_precentral_gyrus 0.455 0.489 0.503 0.598 0.672 0.669

26_R_inferior_frontal_gyrus 0.496 0.536 0.55 0.58 0.713 0.677

25_L_inferior_frontal_gyrus 0.523 0.553 0.569 0.602 0.715 0.69

24_R_middle_frontal_gyrus 0.465 0.48 0.513 0.651 0.692 0.672

23_L_middle_frontal_gyrus 0.478 0.493 0.536 0.649 0.689 0.674

22_R_superior_frontal_gyrus 0.718 0.721 0.748 0.889 0.892 0.881

21_L_superior_frontal_gyrus 0.683 0.685 0.708 0.822 0.849 0.844
Brain 0.892 0.892 0.905 0.955 0.958 0.956
All_LPBA_Data 0.535 0.539 0.554 0.648 0.669 0.643

Figure 4: A table representing the data used within the box plots of Figure 3 and also
showing region-by-region performance for each method. The correlation of the results in
the MIAff column with the (MSQ, CC, MI)Diff columns is (0.921, 0.922, 0.944), suggesting
the critical role of the affine initialization.
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Figure 5: The Jaccard ratios may be similar but show very different errors, as identified
visually. We highlight one region of error in the circled region. The Jaccard values are,
from left to right, 0.945078, 0.951205 and 0.952316. The (MI,CC)-based Jaccard mean/sd
for diffeomorphic brain extraction, over the full dataset, is: 0.958± 0.005. This number is
determined from taking the mean and standard deviation of the brain extraction overlaps
from mapping the group B to the (MI,CC) group A template and vice versa.

intends to use only accessible data, we restrict to evaluation on the public

components of LPBA40.

4.2.2. Extraction of Brain Sub-Regions

The trends present in overall brain extraction persist in the evaluation

of the sub-region overlaps. The overall error in the sub-regions is shown in

Figure 3, while the region-wise are shown in Figure 4. The table reveals

the specific regions where performance differs across metrics. Furthermore,

unsurprisingly, the trends in the MI-affine column are reflected in the dif-

feomorphic results (all of which used the MI-affine metric to initialize the

diffeomorphic matching). Correlations between the diffeomorphic and MI-

affine results are also strong, as in the figure. This further accentuates the

importance of affine initialization in determining the deformable outcome.

Note that, as shown in (Rohlfing et al., 2004), the Jaccard overlap values of

different structures is affected by their surface to volume ratio. One must
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take this variation into account when interpreting these results.

4.3. Relative Computation Time for Each Metric

We quantify the relative wall-clock computation time of the similarity

metrics in terms of the computation time for the mean squares metric (the

simplest and fastest of the three). We run 10 iterations of the metric com-

putation at full resolution (that is, without running a registration) on a

machine that is nominally idle. The input image was three-dimensional with

256×124×256 voxels, as in LPBA40 data. The results are MSQ=1, MI=14.7,

CC=19.1 where MSQ took 22 seconds. Thus, the CC metric is the most

time-consuming and the MSQ metric may be the most efficient for perform-

ing an initial brain extraction that may be later refined by a post-processing

algorithm.

5. Discussion

5.1. Summary

In this paper, we provide an overview of the ANTs toolkit and detail

the ANTs implementation of MSQ, CC and MI deformable image registra-

tion metrics. We also contribute a new implementation of the CC met-

ric that reduces computation time by a factor of 4-5 with default param-

eters in 1mm3 3D brain image registration. We evaluate the impact of

these metric choices—and their affine counterparts—on optimal template

construction and template-based brain labeling. We use a conservative two-

fold cross-validation strategy to show template stability. We establish—

quantitatively—that the templates derived from the subsets of the data are

more similar to each other than any individual in the dataset. The law of
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large numbers in anatomical variability, combined with effects of diminish-

ing returns, explain these findings. That is, brains from different individuals

sampled in a demographic are coarsely similar and the somewhat random dif-

ferences tend to average out. In addition, the similarity metric does not have

a large impact on the overall template shape. Despite a very high similarity of

the templates, there do exist small residual differences after high-dimensional

alignment with different metrics and sub-populations. Future work will be

required to understand the nature and impact of these differences.

Our results show that mutual information-based affine registration, in

ANTs, provides the best initialization for deformable registration. Mutual

information, along with normalized mutual information, has advantages as

a similarity metric in dealing with scanner variations and pathomorpholog-

ical changes. It is possible that MI’s robustness may prove a requirement,

over the long-term, for large-scale clinical studies. Indeed, as shown in our

own evaluation, MI performs best of the three metrics for whole head affine

registration. It remains to be seen if some variants of MI are also optimal

for deformable registration. It is possible that other implementations of CC

and MSQ affine registration would perform as well as MI, but we hypothesize

that the MI’s quality performance is in part due to its well-known robustness

to non-matching structure (e.g. features that exist outside the brain and ex-

hibit significant inter-subject variation). The best diffeomorphic results in

our study come from initializing with MI-based affine registration, regardless

of the deformable metric used.

One surprising result from our study is the relative similarity in brain

extraction performance across the deformable metrics, after affine initializa-
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tion with MI. This suggests that extraction of larger structures is—in this

dataset—very sensitive to affine initialization quality and less sensitive to the

deformable metric. However, Figure 5 shows that apparently small variation

in Jaccard metric may result in visually obvious differences in performance.

The supplementary material contains the evaluation values for the Hausdorff

distance between brain extractions, which may be a more sensitive measure

in this application.

Two-fold cross-validation reduces bias in our results and tests general-

ization to new data (assuming similar resolution, contrast, etc). While all

studies should use such a strategy, some involve sets that are too small to

leave out any data (Yushkevich et al., 2009). Other studies simply accept

a biased strategy though it is not necessary (Jia et al., 2010). Results are

artificially inflated when the same data are used in both testing and training

(Vul et al., 2009; Kriegeskorte et al., 2009). This effect makes it challenging

to compare results that use cross-validation and those that do not.

The current study also highlights the impact of quality affine initializa-

tion in brain labeling performance. We report correlations greater than 0.92

between the initial affine registration result and the final deformable registra-

tion result that persists across metrics. Consequently, initialization quality

in diffeomorphic image registration is of critical importance.

5.2. Relation to Other Work

In addition to (Klein et al., 2009) and (Klein et al., 2010a), a few other

studies compare metrics in affine registration (Studholme et al., 1997; Woods

et al., 1998) and deformable registration (Woods et al., 1998; Noblet et al.,

2006). Noblet et al (Noblet et al., 2006) use an intensity difference met-
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ric (and a few transformations thereof) to show superior performance of a

B-Spline algorithm relative to the Demons algorithm. Many aspects of the

method were validated, but the method and results were not made public,

to our knowledge. Studholme found (Studholme et al., 1997) that mutual

information was more robust for rigid registration of PET-MRI head data

when compared to other metrics, including cross-correlation. Perhaps the

best known evaluation, historically, is that by Hellier et al (Hellier et al.,

2003). Relative to Hellier’s evaluation, the current work uses a single frame-

work to test different similarity metrics without the confound of different

pre-processing and transformation implementations. That is, of the three

registration components detailed in the introduction, we hold two constant

and evaluate one. Furthermore, in the spirit of open science, our code base,

evaluation data, and evaluation software are made fully available.

A comparison of results reported here and those in a recent paper (Hecke-

mann et al., 2010) suggests that multi-template labeling outperforms single-

template labeling. As may be seen in Klein 2009, specifically Figure 5, rela-

tive overlap performance across algorithms is largely consistent across evalu-

ation datasets. However, absolute performance values have notable variation.

Thus, one must take care in directly comparing overlap values from LPBA40

data with those from Hammers 2003/Heckemann 2010, in particular because

LPBA40 data is lower resolution. Furthermore, the current study evaluates

labeling via whole-head normalization, whereas Heckemann 2010 (and Klein

2009) normalize brain-extracted images.

Despite these caveats, multi-template labeling likely yields a performance

advantage, in general, and therefore we provide a script ants_multitemplate_labeling.sh
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at https://sourceforge.net/downloads/advants/ANTS_Evaluation_Scripts/

that implements the multi-template strategy with ANTs. In fact, the meth-

ods used in this paper to label our group template and those used in standard

multi-template labeling are fundamentally similar. Thus, no new develop-

ments are needed to implement multi-template labeling with ANTs. We also

provide, at the above location, multi-template labeling results derived from

the Hammers dataset by applying the ants_multitemplate_labeling.sh

script to the 19 datasets at http://www.brain-development.org/ (Ham-

mers et al., 2003; Heckemann et al., 2006). Results are competitive with

both (Heckemann et al., 2006, 2010) though the latter appears to use a dif-

ferent label set. The closest comparison may be made with (Heckemann

et al., 2006), which uses almost the same label set, though with 30 datasets

in total. Our results only incorporated the 19 currently available online.

However, we currently focus on single-template labeling strategies due to the

significant human effort required to generate consistent manual labels across

datasets. A common, single template space is used in the large majority of

population studies and the main purpose of this paper is to detail an open-

source framework to implement and benchmark such studies. Some of these

studies are discussed below.

ANTs users employ this technology in a variety of application domains,

including but not limited to, fMRI analysis (Yassa et al., 2010), morphom-

etry (Hanson et al., 2010), anatomical labeling of both human and mouse

anatomy as well as in computer vision. ANTs has proven successful in large-

scale normalization studies in not only healthy subjects, but also diseased

subjects with large anatomical variance Avants et al. (2008); Klein et al.
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(2010a). The SyN method from ANTs recently finished as the top per-

former in an unbiased registration evaluation using manually landmarked

intra-subject pairs of thoracic CT volumes (the EMPIRE-10 challenge for

MICCAI 2010, http://empire10.isi.uu.nl ). ANTs large-deformation

methods easily adapt to processing subjects with epilepsy-induced sclero-

sis (Avants et al., 2010b), Alzheimer’s disease (Yushkevich et al., 2010),

mild cognitive impairment (Yassa et al., 2010), and subjects with autopsy-

confirmed frontotemporal dementia, which induces severe ventriculomegaly

(Avants et al., 2010a). Finally, a subset of the ANTs toolkit is under de-

velopment for inclusion in version 4 of the Insight Toolkit which will bring

these methods to more users, increase robustness and ensure continued user

support.

5.3. Shortcomings of this Study

The goal of this paper was to use the similarity metric as the variable

of interest. As such, we did not evaluate the impact of the transformation

and regularization models on registration accuracy and leave this to future

work. A large number of parameter or algorithm design choices, both subtle

and obvious, were also selected by relying upon experience and good engi-

neering principles, but without direct evaluation. For instance, we did not

explore the many ranges of possible downsampling strategies that could be

employed in our multiresolution framework. As a second example, we did not

use partial volume interpolation in our MI implementation as recommended

by Maes (Maes et al., 1997). The size of the joint histogram in MI may

also impact performance. However, we believe that there is a more funda-

mental issue with using a global MI measure for intra-modality registration.
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The more“flexible” MI correspondences (relative to CC or MSQ) may reduce

precision. Despite this claim, it is difficult to prove, due to the importance of

implementation details, use of normalized or unnormalized MI, or other im-

plementations such as the maximum distance-gradient-magnitude similarity

measure (Gan and Chung, 2005). ANTs also provides the ability to incor-

porate cortical constraints, shown to benefit brain registration (Hellier and

Barillot, 2003), but such data is not leveraged in this analysis. Furthermore,

we did not evaluate on non-brain or non-MRI data. Thus, we may not be

able to generalize these results to other modalities or other organs. Lastly,

we note that measuring brain labeling accuracy with respect to expert raters,

itself, has limitations. For instance, raters may be systematically incorrect in

some structures. Secondly, the biological plausibility of the mappings is not

rated, nor is the detection power for subtle group effects on brain structure.

5.4. Final Conclusions

This paper details the primary ANTs normalization strategies and pro-

vides overview on other aspects of the toolkit. We focus on the deformable

similarity metrics and some of the transformation models available in ANTs,

provide the philosophy of implementation and give quantitative justification

for default ANTs similarity metrics in both deformable and affine registra-

tion. We provide a new fast implementation of the CC metric for deformable

registration, quantify the latest ANTs performance on brain labeling the

LPBA40 dataset and show that brain extraction performance is competitive

with the best available results. However, it is currently challenging to com-

pare our region-wise results on LPBA40 data with other methods. This is in

part because there are few reported results on LPBA40 data in the literature,
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and, secondly, those that exist in the literature use different approaches to or

lack of cross-validation. We also highlight the similarity of templates derived

from data within a demographic and affirm the importance of affine registra-

tion to deformable registration performance. Most importantly, this study

provides reference scripts (written in bash with a translation in python) and

code that may be reproducibly applied to a common evaluation dataset. We

encourage other researchers to compare against these results using a similar

two-fold cross-validation design, along with the Jaccard ratio as an eval-

uation metric. Supplementary material provides Dice overlaps, true/false

positive ratios and Hausdorff metrics as well if other researchers prefer these

measures.
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